Non-Precious Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media: Latest Achievements on Novel Carbon Materials

نویسندگان

  • Angeliki Brouzgou
  • Shuqin Song
  • Zhen-Xing Liang
  • Panagiotis Tsiakaras
چکیده

Low temperature fuel cells (LTFCs) are considered as clean energy conversion systems and expected to help address our society energy and environmental problems. Up-to-date, oxygen reduction reaction (ORR) is one of the main hindering factors for the commercialization of LTFCs, because of its slow kinetics and high overpotential, causing major voltage loss and short-term stability. To provide enhanced activity and minimize loss, precious metal catalysts (containing expensive and scarcely available platinum) are used in abundance as cathode materials. Moreover, research is devoted to reduce the cost associated with Pt based cathode catalysts, by identifying and developing Pt-free alternatives. However, so far none of them has provided acceptable performance and durability with respect to Pt electrocatalysts. By adopting new preparation strategies and by enhancing and exploiting synergetic and multifunctional effects, some elements such as transition metals supported on highly porous carbons have exhibited reasonable electrocatalytic activity. This review mainly focuses on the very recent progress of novel carbon based materials for ORR, including: (i) development of three-dimensional structures; (ii) synthesis of novel hybrid (metal oxide-nitrogen-carbon) electrocatalysts; (iii) use of alternative raw precursors characterized from three-dimensional structure; and (iv) the co-doping methods adoption for novel metal-nitrogen-doped-carbon electrocatalysts. Among the examined materials, reduced graphene oxide-based hybrid electrocatalysts exhibit both excellent activity and long term stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts

Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...

متن کامل

Hydrophilic non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction.

Exploring the role of surface hydrophilicity of non-precious metal N-doped carbon electrocatalysts in electrocatalysis is challenging. Herein we discover an ultra-hydrophilic non-precious carbon electrocatalyst, showing enhanced catalysis efficiency on both gravimetric and areal basis for oxygen reduction reaction due to a high dispersion of active centres.

متن کامل

Dicobalt phosphide nanoparticles encased in boron and nitrogen co-doped graphitic layers as novel non-precious metal oxygen reduction electrocatalysts in alkaline media.

Dicobalt phosphide nanoparticles encased in boron and nitrogen co-doped graphitic layers (BNC/Co2P) were fabricated using a one-step pyrolysis method, which exhibited outstanding electrocatalytic ORR performance comparable to commercial Pt/C towards the oxygen reduction reaction via a four-electron pathway in alkaline solution with long-term stability and excellent methanol tolerance.

متن کامل

Hollow nitrogen-doped carbon spheres as efficient and durable electrocatalysts for oxygen reduction.

Hollow nitrogen-doped carbon spheres (HNCSs) were prepared by a facile method as non-precious catalysts for the oxygen reduction reaction (ORR). The HNCS catalysts exhibited ORR activity comparable with a commercial Pt/C catalyst and superior stability in alkaline electrolyte medium.

متن کامل

IV.C.6 Novel Non-Precious Metals for PEMFC: Catalyst Selection through Molecular Modeling and Durability Studies

Objectives • Synthesize novel non-precious-metal electrocatalysts, with activity and stability similar to Pt, for the oxygen reduction reaction. – High activity toward oxygen reduction reaction – Mass production method – Corrosion resistance – Low cost • Improve understanding of the reaction mechanism of oxygen reduction on non-precious catalysts through: – Theoretical molecular modeling – Elec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016